by falcon<zhangjinw@gmail.com>
2008-02-22
平时在Linux下写代码,直接用"gcc -o out in.c"就把代码编译好了,但是这后面到底做了什么事情呢?如果学习过编译原理则不难理解,一般高级语言程序编译的过程莫过于:预处理、编译、汇编、链接。gcc在后台实际上也经历了这几个过程,我们可以通过-v参数查看它的编译细节,如果想看某个具体的编译过程,则可以分别使用-E,-S,-c和 -O,对应的后台工具则分别为cpp,cc1,as,ld。下面我们将逐步分析这几个过程以及相关的内容,诸如语法检查、代码调试、汇编语言等。
1、预处理
开篇简述:预处理是C语言程序从源代码变成可执行程序的第一步,主要是C语言编译器对各种预处理命令进行处理,包括头文件的包含、宏定义的扩展、条件编译的选择等。
以前没怎么“深入”预处理,脑子对这些东西总是很模糊,只记得在编译的基本过程(词法分析、语法分析)之前还需要对源代码中的宏定义、文件包含、条件编译等命令进行处理。这三类的指令很常见,主要有#define, #include和#ifdef ... #endif,要特别地注意它们的用法。(更多预处理的指令请查阅相关资料)
#define除了可以独立使用以便灵活设置一些参数外,还常常和#ifdef ... #endif结合使用,以便灵活地控制代码块的编译与否,也可以用来避免同一个头文件的多次包含。关于#include貌似比较简单,通过man找到某个函数的头文件,copy进去,加上<>就okay。这里虽然只关心一些技巧,不过预处理还是蕴含着很多潜在的陷阱(可参考<C Traps & Pitfalls>),我们也需要注意的。下面仅介绍和预处理相关的几个简单内容。
- 打印出预处理之后的结果:gcc -E hello.c
这样我们就可以看到源代码中的各种预处理命令是如何被解释的,从而方便理解和查错。
实际上gcc在这里是调用了cpp的(虽然我们通过gcc的-v仅看到cc1),cpp即The C Preprocessor,主要用来预处理宏定义、文件包含、条件编译等。下面介绍它的一个比较重要的选项-D。
- 在命令行定义宏:gcc -Dmacro hello.c
等同于在文件的开头定义宏,即#define maco,但是在命令行定义更灵活。例如,在源代码中有这些语句。
#ifdef DEBUG
printf("this code is for debugging\n");
#endif
如果编译时加上-DDEBUG选项,那么编译器就会把printf所在的行编译进目标代码,从而方便地跟踪该位置的某些程序状态。这样-DDEBUG就可以当作一个调试开关,编译时加上它就可以用来打印调试信息,发布时则可以通过去掉该编译选项把调试信息去掉。
本节参考资料:
[1] C语言教程第九章:预处理
[2] 更多
http://www.91linux.com/html/article/program/cpp/20071203/8745.html
http://www.janker.org/bbs/programmer/2006-10-13/327.html
2、编译(翻译)
开篇简要:编译之前,C语言编译器会进行词法分析、语法分析(-fsyntax-only),接着会把源代码翻译成中间语言,即汇编语言。如果想看到这个中间结果,可以用-S选项。需要提到的是,诸如shell等解释语言也会经历一个词法分析和语法分析的阶段,不过之后并不会进行“翻译”,而是“解释”,边解释边执行。
************************
A、解释程序
所谓解释程序是高级语言翻译程序的一种,它将源语言(如BASIC)书写的源程序作为输入,解释一句后就提交计算机执行一句,并不形成目标程序。就像外语翻译中的“口译”一样,说一句翻一句,不产生全文的翻译文本。这种工作方式非常适合于人通过终端设备与计算机会话,如在终端上打一条命令或语句,解释程序就立即将此语句解释成一条或几条指令并提交硬件立即执行且将执行结果反映到终端,从终端把命令打入后,就能立即得到计算结果。这的确是很方便的,很适合于一些小型机的计算问题。但解释程序执行速度很慢,例如源程序中出现循环,则解释程序也重复地解释并提交执行这一组语句,这就造成很大浪费。
B、编译程序
这是一类很重要的语言处理程序,它把高级语言(如FORTRAN、COBOL、Pascal、C等)源程序作为输入,进行翻译转换,产生出机器语言的目标程序,然后再让计算机去执行这个目标程序,得到计算结果。
编译程序工作时,先分析,后综合,从而得到目标程序。所谓分析,是指词法分析和语法分析;所谓综合是指代码优化,存储分配和代码生成。为了完成这些分析综合任务,编译程序采用对源程序进行多次扫描的办法,每次扫描集中完成一项或几项任务,也有一项任务分散到几次扫描去完成的。下面举一个四遍扫描的例子:第一遍扫描做词法分析;第二遍扫描做语法分析;第三遍扫描做代码优化和存储分配;第四遍扫描做代码生成。
值得一提的是,大多数的编译程序直接产生机器语言的目标代码,形成可执行的目标文件,但也有的编译程序则先产生汇编语言一级的符号代码文件,然后再调用汇编程序进行翻译加工处理,最后产生可执行的机器语言目标文件。
在实际应用中,对于需要经常使用的有大量计算的大型题目,采用招待速度较快的编译型的高级语言较好,虽然编译过程本身较为复杂,但一旦形成目标文件,以后可多次使用。相反,对于小型题目或计算简单不太费机时的题目,则多选用解释型的会话式高级语言,如BASIC,这样可以大大缩短编程及调试的时间
************************
把源代码翻译成汇编语言,实际上是编译的整个过程中的第一个阶段,之后的阶段和汇编语言的开发过程没有什么区别。这个阶段涉及到对源代码的词法分析、语法检查(通过-std指定遵循哪个标准),并根据优化(-O)要求进行翻译成汇编语言的动作。
如果仅仅希望进行语法检查,可以用-fsyntax-only选项;而为了使代码有比较好的移植性,避免使用gcc的一些特性,可以结合-std和 -pedantic(或者-pedantic-erros)选项让源代码遵循某个C语言标准的语法。这里演示一个简单的例子。
$ cat hello.c |
语法错误是程序开发过程中难以避免的错误(人的大脑在很多条件下都容易开小差),不过编译器往往能够通过语法检查快速发现这些错误,并准确地告诉你语法错误的大概位置。因此,作为开发人员,要做的事情不是“恐慌”(不知所措),而是认真阅读编译器的提示,根据平时积累的经验(最好在大脑中存一份常见语法错误索引,很多资料都提供了常见语法错误列表,如<C Traps&Pitfalls>和最后面的参考资料[12]也列出了很多常见问题)和编辑器提供的语法检查功能(语法加亮、括号匹配提示等)快速定位语法出错的位置并进行修改。
语法检查之后就是翻译动作,gcc提供了一个优化选项-O,以便根据不同的运行平台和用户要求产生经过优化的汇编代码。例如,
$ gcc -o hello hello.c #采用默认选项,不优化 |
根据上面的简单演示,可以看出gcc有很多不同的优化选项,主要看用户的需求了,目标代码的大小和效率之间貌似存在一个“纠缠”,需要开发人员自己权衡。
下面我们通过-S选项来看看编译出来的中间结果,汇编语言,还是以之前那个hello.c为例。
$ gcc -S hello.c #默认输出是hello.s,可自己指定,输出到屏幕-o -,输出到其他文件-o file |
不知道看出来没?和我们在课堂里学的intel的汇编语法不太一样,这里用的是AT&T语法格式。如果之前没接触过AT&T的,可以看看参考资料[2]。如果想学习Linux下的汇编语言开发,从下一节开始哦,下一节开始的所有章节基本上覆盖了Linux下汇编语言开发的一般过程,不过这里不介绍汇编语言语法。
这里需要补充的是,在写C语言代码时,如果能够对编译器比较熟悉(工作原理和一些细节)的话,可能会很有帮助。包括这里的优化选项(有些优化选项可能在汇编时采用)和可能的优化措施,例如字节对齐(可以看看这本书"Linux_Assembly_Language_Programming"的第六小节)、条件分支语句裁减(删除一些明显分支)等。
本节参考资料
[1] Guide to Assembly Language Programming in Linux(pdf教程,社区有下载)
http://oss.lzu.edu.cn/modules/wfdownloads/singlefile.php?cid=5&lid=94
[2] Linux汇编语言开发指南(在线):
http://www.ibm.com/developerworks/cn/linux/l-assembly/index.html
[3] PowerPC 汇编
http://www.ibm.com/developerworks/cn/linux/hardware/ppc/assembly/index.html
[4] 用于 Power 体系结构的汇编语言
http://www.ibm.com/developerworks/cn/linux/l-powasm1.html
[5] Linux Assembly HOWTO
http://mirror.lzu.edu.cn/tldp/HOWTO/Assembly-HOWTO/
[6] Linux 中 x86 的内联汇编
http://www.ibm.com/developerworks/cn/linux/sdk/assemble/inline/index.html
[7] Linux Assembly Language Programming
http://mirror.lzu.edu.cn/doc/incoming/ebooks/linux-unix/Linux_EN_Original_Books
3、汇编
开篇:这里实际上还是翻译过程,只不过把作为中间结果的汇编代码翻译成了机器代码,即目标代码,不过它还不可以运行。如果要产生这一中间结果,可用gcc的-c选项,当然,也可通过as命令_汇编_汇编语言源文件来产生。
汇编是把汇编语言翻译成目标代码的过程,在学习汇编语言开发时,大家应该比较熟悉nasm汇编工具(支持Intel格式的汇编语言)了,不过这里主要用 as汇编工具来汇编AT&T格式的汇编语言,因为gcc产生的中间代码就是AT&T格式的。下面来演示分别通过gcc的-c选项和as来产生目标代码。
Quote: |
$ file hello.s |
gcc和as默认产生的目标代码都是ELF格式[6]的,因此这里主要讨论ELF格式的目标代码(如果有时间再回顾一下a.out和coff格式,当然你也可以参考资料[15],自己先了解一下,并结合objcopy来转换它们,比较异同)。
目标代码不再是普通的文本格式,无法直接通过文本编辑器浏览,需要一些专门的工具。如果想了解更多目标代码的细节,区分relocatable(可重定位)、executable(可执行)、shared libarary(共享库)的不同,我们得设法了解目标代码的组织方式和相关的阅读和分析工具。下面我们主要介绍这部分内容。
"BFD is a package which allows applications to use the same routines to operate on object files whatever the object file format. A new object file format can be supported simply by creating a new BFD back end and adding it to the library."[24][25]。
binutils(GNU Binary Utilities)的很多工具都采用这个库来操作目标文件,这类工具有objdump,objcopy,nm,strip等(当然,你也可以利用它。如果你深入了解ELF格式,那么通过它来分析和编写Virus程序将会更加方便),不过另外一款非常优秀的分析工具readelf并不是基于这个库,所以你也应该可以直接用elf.h头文件中定义的相关结构来操作ELF文件。
下面将通过这些辅助工具(主要是readelf和objdump,可参考本节最后列出的资料[4]),结合ELF手册[6](建议看第三篇中文版)来分析它们。
下面大概介绍ELF文件的结构和三种不同类型ELF文件的区别。
ELF文件的结构:
ELF Header(ELF文件头)
Porgram Headers Table(程序头表,实际上叫段表好一些,用于描述可执行文件和可共享库)
Section 1
Section 2
Section 3
...
Section Headers Table(节区头部表,用于链接可重定位文件成可执行文件或共享库)
对于可重定位文件,程序头是可选的,而对于可执行文件和共享库文件(动态连接库),节区表则是可选的。这里的可选是指没有也可以。可以分别通过 readelf文件的-h,-l和-S参数查看ELF文件头(ELF Header)、程序头部表(Program Headers Table,段表)和节区表(Section Headers Table)。
文件头说明了文件的类型,大小,运行平台,节区数目等。先来通过文件头看看不同ELF的类型。为了说明问题,先来几段代码吧。
Code:
[Ctrl+A Select All]
Code:
[Ctrl+A Select All]
Code:
[Ctrl+A Select All]
下面通过这几段代码来演示通过readelf -h参数查看ELF的不同类型。期间将演示如何创建动态连接库(即可共享文件)、静态连接库,并比较它们的异同。
Quote: |
$ gcc -c myprintf.c test.c #编译产生两个目标文件myprintf.o和test.o,它们都是可重定位文件(REL) |
经过上面的演示基本可以看出它们之间的不同。可重定位文件本身不可以运行,仅仅是作为可执行文件、静态连接库(也是可重定位文件)、动态连接库的 “组件”。静态连接库和动态连接库本身也不可以执行,作为可执行文件的“组件”,它们两者也不同,前者也是可重定位文件(只不过可能是多个可重定位文件的集合),并且在连接时加入到可执行文件中去;而动态连接库在连接时,库文件本身并没有添加到可执行文件中,只是在可执行文件中加入了该库的名字等信息,以便在可执行文件运行过程中引用库中的函数时由动态连接器去查找相关函数的地址,并调用它们。从这个意义上说,动态连接库本身也具有可重定位的特征,含有可重定位的信息。对于什么是重定位?如何进行静态符号和动态符号的重定位,我们将在链接部分和《动态符号链接的细节》一节介绍。
下面来看看ELF文件的主体内容,节区(Section)。ELF文件具有很大的灵活性,它通过文件头组织整个文件的总体结构,通过节区表 (Section Headers Table)和程序头(Program Headers Table或者叫段表)来分别描述可重定位文件和可执行文件。但不管是哪种类型,它们都需要它们的主体,即各种节区。在可重定位文件中,节区表描述的就是各种节区本身;而在可执行文件中,程序头描述的是由各个节区组成的段(Segment),以便程序运行时动态装载器知道如何对它们进行内存映像,从而方便程序加载和运行。
下面先来看看一些常见的节区,而关于这些节区(section)如何通过重定位构成成不同的段(Segments),以及有哪些常规的段,我们将在链接部分进一步介绍。
可以通过readelf的-S参数查看ELF的节区。(建议一边操作一边看文档,以便加深对ELF文件结构的理解)先来看看可重定位文件的节区信息,通过节区表来查看:
Quote: |
$ gcc -c myprintf.c #默认编译好myprintf.c,将产生一个可重定位的文件myprintf.o |
从上表可以看出,对于可重定位文件,会包含这些基本节区.text, .rel.text, .data, .bss, .rodata, .comment, .note.GNU-stack, .shstrtab, .symtab和.strtab。为了进一步理解这些节区和源代码的关系,这里来看一看myprintf.c产生的汇编代码。
Quote: |
$ gcc -S myprintf.c |
是不是可以从中看出可重定位文件中的那些节区和汇编语言代码之间的关系?在上面的可重定位文件,可以看到有一个可重定位的节区,即. rel.text,它标记了两个需要重定位的项,.rodata和puts。这个节区将告诉编译器这两个信息在链接或者动态链接的过程中需要重定位,具体如何重定位?将根据重定位项的类型,比如上面的R_386_32和R_386_PC32(关于这些类型的更多细节,请查看ELF手册[6])。
到这里,对可重定位文件应该有了一个基本的了解,下面将介绍什么是可重定位,可重定位文件到底是如何被链接生成可执行文件和动态连接库的,这个过程除了进行了一些符号的重定位外,还进行了哪些工作呢?
本节参考资料:
[1] 了解编译程序的过程
http://9iyou.com/Program_Data/linuxunix-3125.html
http://www.host01.com/article/server/00070002/0621409075078127.htm
[2] C track: compiling C programs.
http://www.cs.caltech.edu/courses/cs11/material/c/mike/misc/compiling_c.html
[3] Dissecting shared libraries
http://www.ibm.com/developerworks/linux/library/l-shlibs.html
4、链接
开篇:重定位是将符号引用与符号定义进行链接的过程。因此链接是处理可重定位文件,把它们的各种符号引用和符号定义转换为可执行文件中的合适信息(一般是虚拟内存地址)的过程。链接又分为静态链接和动态链接,前者是程序开发阶段程序员用ld(gcc实际上在后台调用了ld)静态链接器手动链接的过程,而动态链接则是程序运行期间系统调用动态链接器(ld-linux.so)自动链接的过程。比如,如果链接到可执行文件中的是静态连接库libmyprintf.a,那么. rodata节区在链接后需要被重定位到一个绝对的虚拟内存地址,以便程序运行时能够正确访问该节区中的字符串信息。而对于puts,因为它是动态连接库libc.so中定义的函数,所以会在程序运行时通过动态符号链接找出puts函数在内存中的地址,以便程序调用该函数。在这里主要讨论静态链接过程,动态链接过程见《动态符号链接的细节》。
静态链接过程主要是把可重定位文件依次读入,分析各个文件的文件头,进而依次读入各个文件的节区,并计算各个节区的虚拟内存位置,对一些需要重定位的符号进行处理,设定它们的虚拟内存地址等,并最终产生一个可执行文件或者是动态链接库。这个链接过程是通过ld来完成的,ld在链接时使用了一个链接脚本(linker script),该链接脚本处理链接的具体细节。由于静态符号链接过程非常复杂,特别是计算符号地址的过程,考虑到时间关系,相关细节请参考ELF手册[6]。这里主要介绍可重定位文件中的节区(节区表描述的)和可执行文件中段(程序头描述的)的对应关系以及gcc编译时采用的一些默认链接选项。
下面先来看看可执行文件的节区信息,通过程序头(段表)来查看:
Quote: |
$ readelf -S test.o #为了比较,先把test.o的节区表也列出 |
上表给出了可执行文件的如下几个段(segment),
PHDR: 给出了程序表自身的大小和位置,不能出现一次以上。
INTERP: 因为程序中调用了puts(在动态链接库中定义),使用了动态连接库,因此需要动态装载器/链接器(ld-linux.so)
LOAD: 包括程序的指令,.text等节区都映射在该段,只读(R)
LOAD: 包括程序的数据,.data, .bss等节区都映射在该段,可读写(RW)
DYNAMIC: 动态链接相关的信息,比如包含有引用的动态连接库名字等信息
NOTE: 给出一些附加信息的位置和大小
GNU_STACK: 这里为空,应该是和GNU相关的一些信息
这里的段可能包括之前的一个或者多个节区,也就是说经过链接之后原来的节区被重排了,并映射到了不同的段,这些段将告诉系统应该如何把它加载到内存中。
从上表中,通过比较可执行文件(test)中拥有的节区和可重定位文件(test.o和myprintf.o)中拥有的节区后发现,链接之后多了一些之前没有的节区,这些新的节区来自哪里?它们的作用是什么呢?先来通过gcc的-v参数看看它的后台链接过程。
Quote: |
$ gcc -v -o test test.o myprintf.o #把可重定位文件链接成可执行文件 |
从上边的演示看出,gcc在连接了我们自己的目标文件test.o和myprintf.o之外,还连接了crt1.o,crtbegin.o等额外的目标文件,难道那些新的节区就来自这些文件?
另外gcc在进行了相关配置(./configure)后,调用了collect2,却并没有调用ld,通过查找gcc文档中和collect2相关的部分发现collect2在后台实际上还是去寻找ld命令的。为了理解gcc默认连接的后台细节,这里直接把collect2替换成ld,并把一些路径换成绝对路径或者简化,得到如下的ld命令以及执行的效果。
Quote: |
$ ld --eh-frame-hdr \ |
不出我们所料,它完美的运行了。下面通过ld的手册(man ld)来分析一下这几个参数。
--eh-frame-hdr
要求创建一个.eh_frame_hdr节区(貌似目标文件test中并没有这个节区,所以不关心它)。
Quote: |
$ ld -m elf_i386 -dynamic-linker /lib/ld-linux.so.2 -o test /usr/lib/crt1.o /usr/lib/crti.o test.o myprintf.o -L/usr/lib -lc /usr/lib/crtn.o #后面发现不用链接libgcc,也不用--eh-frame-hdr参数 |
Quote: |
$ ld -m elf_i386 -dynamic-linker /lib/ld-linux.so.2 -o test /usr/lib/crt1.o test.o myprintf.o -L/usr/lib/ -lc |
Quote: |
$ readelf -s /usr/lib/crt1.o | grep __libc_csu_init |
Quote: |
$ ld -m elf_i386 -dynamic-linker /lib/ld-linux.so.2 -o test test.o myprintf.o -L/usr/lib/ -lc |
Quote: |
$ ./test |
Quote: |
$ gcc -g -c test.c myprintf.c #产生目标代码, 非交叉编译,不指定-m也可以链接成功,所以下面可以去掉-m参数 |
Quote: |
$ ld --verbose | grep ^ENTRY #非交叉编译,可不用-m参数;ld默认找_start入口,并不是main哦! |
Quote: |
$ cat test.c |
Quote: |
$ ld --verbose | grep PROVIDE | grep -v HIDDEN |
这里面有几个我们比较关心的,第一个是程序的入口地址__executable_start,另外三个是etext,edata,end,分别对应程序的代码段(text)、初始化数据(data)和未初始化的数据(bss)(可以参考资料[6]和man etext),如何引用这些变量呢?看看这个例子。
Code:
[Ctrl+A Select All]
到这里,程序链接过程的一些细节都介绍得差不多了。在《动态符号链接的细节》中将主要介绍ELF文件的动态符号链接过程。
本节参考资料
[1] An beginners guide to compiling programs under Linux.
http://www.luv.asn.au/overheads/compile.html
[2] gcc manual
http://gcc.gnu.org/onlinedocs/gcc-4.2.2/gcc/
[3] A Quick Tour of Compiling, Linking, Loading, and Handling Libraries on Unix
http://efrw01.frascati.enea.it/Software/Unix/IstrFTU/cern-cnl-2001-003-25-link.html
[4] Unix 目标文件初探
http://www.ibm.com/developerworks/cn/aix/library/au-unixtools.html
[5] Before main()分析
http://www.xfocus.net/articles/200109/269.html
[6] A Process Viewing Its Own /proc/<PID>/map Information
http://www.linuxforums.org/forum/linux-kernel/51790-process-viewing-its-own-proc-pid-map-information.html
_start竟然是真正的程序入口,那在有main的情况下呢?为什么在_start之后能够找到main呢?这个看看alert7大叔的"Before main分析"[5]吧,这里不再深入介绍。总之呢,通过修改程序的return语句为_exit(0)和修改程序的入口为_start,我们的代码不链接gcc默认链接的那些额外的文件同样可以工作得很好。并且打破了一个学习C语言以来的常识:main函数作为程序的主函数,是程序的入口,实际上则不然。
再补充一点内容,在ld的链接脚本中,有一个特别的关键字PROVIDE,由这个关键字定义的符号是ld的预定义字符,我们可以在C语言函数中扩展它们后直接使用。这些特别的符号可以通过下面的方法获取, 原来是这样,程序的入口(entry)竟然不是main函数,而是_start。那干脆把汇编里头的main给改掉算了,看行不行?
通过上面的演示和解释发现只要把return语句修改为_exit语句,程序即使不链接任何额外的目标代码都可以正常运行(原因是不连接那些额外的文件时相当于没有进行初始化操作,如果在程序的最后执行ret汇编指令,程序将无法获得正确的eip,从而无法进行后续的动作)。但是为什么会有“找不到 _start符号”的警告呢?通过readelf -s查看crt1.o发现里头有这个符号,并且crt1.o引用了main这个符号,是不是意味着会从_start进入main呢?是不是程序入口是 _start,而并非main呢?
先来看看刚才提到的链接器的默认链接脚本(ld -m elf_386 --verbose),它告诉我们程序的入口(entry)是_start,而一个可执行文件必须有一个入口地址才能运行,所以这就是说明了为什么ld一定要提示我们“_start找不到”,找不到以后就给默认设置了一个地址。
貌似程序运行完了,不过结束时冒出个段错误?可能是程序结束时有问题,用gdb调试看看:
这样却说没有找到入口符号_start,难道crt1.o中定义了这个符号?不过它给默认设置了一个地址,只是个警告,说明test已经生成,不管怎样先运行看看再说。
竟然是crt1.o调用了__libc_csu_init函数,而该函数却引用了我们没有链接的crti.o文件中定义的_init符号。这样的话不链接 crti.o和crtn.o文件就不成了罗?不对吧,要不干脆不用crt1.o算了,看看gcc额外连接进去的最后一个文件crt1.o到底干了个啥子?
貌似不行,竟然有人调用了__libc_csu_init函数,而这个函数引用了_init。这两个符号都在哪里呢?
完全可以工作,而且发现.ctors(保存着程序中全局构造函数的指针数组), .dtors(保存着程序中全局析构函数的指针数组),.jcr(未知),.eh_frame节区都没有了,所以crtbegin.o和crtend.o应该包含了这些节区。
而对于另外两个文件crti.o和crtn.o,通过readelf -S查看后发现它们都有.init和.fini节区,如果我们不需要让程序进行一些初始化和清理工作呢?是不是就可以不链接这个两个文件?试试看。
- -m elf_i386
这里指定不同平台上的链接脚本,可以通过--verbose命令查看脚本的具体内容,如ld -m elf_i386 --verbose,它实际上被存放在一个文件中(/usr/lib/ldscripts目录下),你可以去修改这个脚本,具体如何做?请参考ld的手册。在后面我们将简要提到链接脚本中是如何预定义变量的,以及这些预定义变量如何在我们的程序中使用。需要提到的是,如果不是交叉编译,那么无须指定该选项。
- -dynamic-linker /lib/ld-linux.so.2
指定动态装载器/链接器,即程序中的INTERP段中的内容。动态装载器/连接器负责连接有可共享库的可执行文件的装载和动态符号连接。
- -o test
指定输出文件,即可执行文件名的名字
- /usr/lib/crt1.o /usr/lib/crti.o /usr/lib/gcc/i486-slackware-linux/4.1.2/crtbegin.o
链接到test文件开头的一些内容,这里实际上就包含了.init等节区。.init节区包含一些可执行代码,在main函数之前被调用,以便进行一些初始化操作,在C++中完成构造函数功能,更多细节请参考资料[9]
- test.o myprintf.o
链接我们自己的可重定位文件
- -L/usr/lib/gcc/i486-slackware-linux/4.1.2 -L/usr/i486-slackware-linux/lib -L/usr/lib/ -lgcc --as-needed -lgcc_s --no-as-needed -lc -lgcc --as-needed -lgcc_s --no-as-needed
链接libgcc库和libc库,后者定义有我们需要的puts函数
- /usr/lib/gcc/i486-slackware-linux/4.1.2/crtend.o /usr/lib/crtn.o
链接到test文件末尾的一些内容,这里实际上包含了.fini等节区。.fini节区包含了一些可执行代码,在程序退出时被执行,作一些清理工作,在C++中完成析构造函数功能。我们往往可以通过atexit来注册那些需要在程序退出时才执行的函数。
对于crtbegin.o和crtend.o这两个文件,貌似完全是用来支持C++的构造和析构工作的[9],所以可以不链接到我们的可执行文件中,链接时把它们去掉看看,
回复Comments
作者:
{commentrecontent}