Any linear sinusoidal driven combination of capacitors, inductors, resistors has a steady state solution of the form
![](http://scienceworld.wolfram.com/physics/iimg39.gif)
which can be found using a complex impedance Z defined by
![](http://scienceworld.wolfram.com/physics/iimg41.gif)
where I and V are also treated as complex quantities. The current I is given in terms of the electromotive force
by
![](http://scienceworld.wolfram.com/physics/iimg44.gif)
![](http://scienceworld.wolfram.com/physics/iimg45.gif)
and the phase shift by
![](http://scienceworld.wolfram.com/physics/iimg46.gif)
For circuit elements in series,
![](http://scienceworld.wolfram.com/physics/iimg47.gif)
and in parallel,
![](http://scienceworld.wolfram.com/physics/iimg48.gif)
For capacitors,
![](http://scienceworld.wolfram.com/physics/iimg49.gif)
where
is the angular frequency, Q is the charge, and C is the capacitance. Taking the derivative on each side gives
![](http://scienceworld.wolfram.com/physics/iimg53.gif)
so
![](http://scienceworld.wolfram.com/physics/iimg54.gif)
For inductors,
![](http://scienceworld.wolfram.com/physics/iimg55.gif)
where L is the inductance. Integrating both sides gives
![](http://scienceworld.wolfram.com/physics/iimg57.gif)
so
![](http://scienceworld.wolfram.com/physics/iimg58.gif)
For resistors, the impedance is simply equal to the resistance R,
![](http://scienceworld.wolfram.com/physics/iimg59.gif)
![](http://scienceworld.wolfram.com/physics/iimg39.gif)
(1)
which can be found using a complex impedance Z defined by
![](http://scienceworld.wolfram.com/physics/iimg41.gif)
(2)
where I and V are also treated as complex quantities. The current I is given in terms of the electromotive force
![](http://scienceworld.wolfram.com/physics/iimg43.gif)
![](http://scienceworld.wolfram.com/physics/iimg44.gif)
(3)
![](http://scienceworld.wolfram.com/physics/iimg45.gif)
(4)
and the phase shift by
![](http://scienceworld.wolfram.com/physics/iimg46.gif)
(5)
For circuit elements in series,
![](http://scienceworld.wolfram.com/physics/iimg47.gif)
(6)
and in parallel,
![](http://scienceworld.wolfram.com/physics/iimg48.gif)
(7)
For capacitors,
![](http://scienceworld.wolfram.com/physics/iimg49.gif)
(8)
where
![](http://scienceworld.wolfram.com/physics/iimg50.gif)
![](http://scienceworld.wolfram.com/physics/iimg53.gif)
(9)
so
![](http://scienceworld.wolfram.com/physics/iimg54.gif)
(10)
For inductors,
![](http://scienceworld.wolfram.com/physics/iimg55.gif)
(11)
where L is the inductance. Integrating both sides gives
![](http://scienceworld.wolfram.com/physics/iimg57.gif)
(12)
so
![](http://scienceworld.wolfram.com/physics/iimg58.gif)
(13)
For resistors, the impedance is simply equal to the resistance R,
![](http://scienceworld.wolfram.com/physics/iimg59.gif)
(14)
回复Comments
{commenttime}{commentauthor}
{CommentUrl}
{commentcontent}