揭示大自然的规律

 

-=Mathematics=-

     >>  <<
我的日历
分类日志
友情链接
最新评论
搜索日志
访问计数
获取 RSS
我的 Blog:
iamet 最新的 20 条日志
[∑〖数学〗]
[Ω〖物理〗]
[¤〖天文〗]
[℃〖化学〗]
全站 Blog:
全站最新的 20 条日志

 

高斯分圆公式[Gauss's Cyclotomic Formula]

   ∑〖数学〗2005-6-9 23:22
Let p > 3 be a prime number, then

where R(x,y) and S(x,y) are homogeneous polynomials in x and y with integer coefficients. Gauss (1965, p. 467) gives the coefficients of R and S up to p = 23.

Kraitchik (1924) generalized Gauss's formula to odd squarefree integers n > 3. Then Gauss's formula can be written in the slightly simpler form

where and have integer coefficients and are of degree and , respectively, with the totient function and a cyclotomic polynomial. In addition, is symmetric if n is even;otherwise it is antisymmetric. is symmetric in most cases, but it antisymmetric if n is of the form (Riesel 1994, p. 436). The following table gives the first few and s (Riesel 1994, pp. 436-442).
[left]n[/left]

[left]5[/left]
1

[left]7[/left]

[left]11[/left]


标签集:TAGS:
回复Comments()点击Count()

回复Comments

{commenttime}{commentauthor}

{CommentUrl}
{commentcontent}