揭示大自然的规律

 

-=Mathematics=-

     >>  <<
我的日历
分类日志
友情链接
最新评论
搜索日志
访问计数
获取 RSS
我的 Blog:
iamet 最新的 20 条日志
[∑〖数学〗]
[Ω〖物理〗]
[¤〖天文〗]
[℃〖化学〗]
全站 Blog:
全站最新的 20 条日志

 

Kummer曲面[Kummer Surface]

   ∑〖数学〗2005-3-5 22:17

The Kummer surfaces are a family of quartic surfaces given by the algebraic equation
(1)

where
(2)

p, q, r, and s are the tetrahedral coordinates
(3)

(4)

(5)

(6)

and w is a parameter which, in the above plots, is set to w = 1. The above plots correspond to
(7)

(double sphere), 2/3, 1
(8)

(Roman surface),,
(9)

(four planes), 2, and 5. The case corresponds to four real points.
The following table gives the number of ordinary double points for various ranges of corresponding to the preceding illustrations.
4 12

4 12

16 0

16 0
The Kummer surfaces can be represented parametrically by hyperelliptic theta functions/u].Most of the Kummer surfaces admit 16 [u]ordinary double points, the maximum possible for a quartic surface. A special case of a Kummer surface is the tetrahedroid.
Nordstrand gives the implicit equations as
(10)

or
(11)

标签集:TAGS:
回复Comments()点击Count()

回复Comments

{commenttime}{commentauthor}

{CommentUrl}
{commentcontent}